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Monotonic functions

Definition 2.3.1 A function is

• increasing if x1<x2 implies f(x1)≤f(x2),

• strictly increasing if x1<x2 implies f(x1)<f(x2),

• decreasing if x1<x2 implies f(x1)≥f(x2),

• strictly decreasing if x1<x2 implies f(x1)>f(x2),

• monotonic if it is either increasing or decreasing,

• strictly monotonic if it is either strictly increasing or strictly de-
creasing,

Example 2.3.2 Verify the following.

1. ex is strictly increasing on R, (you may assume again that exey = ex+y

for all x, y ∈ R and ex > 1 for x > 0.)

2. x3 is strictly increasing on R,

3. x2 is not increasing on R,

4. for all n ∈ N, xn is strictly increasing on [0,∞).

Solutions

1. Assume x < y then ey = ey−x+x = ey−xex > ex by given assumptions,
noting that y − x > 0.

2. Assume x < y then consider

y3 − x3 = (y − x)
(
y2 + yx+ x2

)
.

The first factor is > 0 since x > y but is the second factor > 0? If y and x
are of different signs perhaps the term xy will be so large and negative that
is dominates y2 + x2 making the factor negative. This does NOT happen.
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The easiest way to show this (though it is a bit of a trick) is to complete the
square

y2 + yx+ x2 =
(
y +

x

2

)2

+
3x2

4
.

This is ≥ 0 since squares are non-negative but it is, in fact, > 0 since we can
have this equal to zero iff y = x = 0 and we have demanded that y > x.

3. Give a counterexample, i.e. −2 < −1 yet (−2)2 > (−1)2 .

4. On Question Sheet. �

Theorem 2.3.3 Inverse Function Theorem

Assume that f is continuous and strictly monotonic on the closed and
bounded interval [a, b]. Write

[c, d] =

{
[f(a) , f(b)] if f is increasing

[f(b) , f(a)] if f is decreasing.

Then there exists a function g, continuous and strictly monotonic on [c, d]
which is inverse to f , i.e. g(f(x)) = x for all x ∈ [a, b] and f(g(y)) = y for
all y ∈ [c, d].

Proof Not given in 2018-19 Assume that f is strictly increasing.
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Existence of the inverse.

• f : [a, b] → [c, d] is a surjection. Choose any k ∈ [c, d]. Thus c ≤ k ≤ d,
or in other words, f(a) ≤ k ≤ f(b). Therefore, by the Intermediate Value
Theorem there exists ℓ ∈ [a, b] for which f(ℓ) = k. Hence f maps onto k.
True for all k ∈ [c, d] means f maps onto [c, d] , i.e. f is a surjection.
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• f : [a, b] → [c, d] is an injection. Assume not, so there exists two

ℓ 6= ℓ′ ∈ [a, b] such that f(ℓ) = f(ℓ′). Without loss of generality, ℓ < ℓ′. Since
f is strictly increasing we have f(ℓ) < f(ℓ′) a contradiction.

• Hence f : [a, b] → [c, d] is a bijection and so there exists an inverse g :
[c, d] → [a, b] satisfying f(g(k)) = k for all k ∈ [c, d] and g(f(ℓ)) = ℓ for all
ℓ ∈ [a, b] .

The inverse function g strictly increasing on [c, d] The inverse g is
strictly increasing if, and only if,

∀k1, k2 ∈ [c, d] , k1 < k2 =⇒ g(k1) < g(k2) .

Assume not, so the negation is true, namely

∃ k1, k2 ∈ [c, d] , k1 < k2 and g(k1) ≥ g(k2) .

Since f is increasing g(k1) ≥ g(k2) , switched around as g(k2) ≤ g(k1) ,
implies f(g(k2)) ≤ f(g(k1)) which can be switched to f(g(k1)) ≥ f(g(k2)).
But f and g are inverses, so we get k1 ≥ k2 which contradicts k1 < k2.

Hence assumption false, and so g is strictly increasing.

The inverse function g is continuous on [c, d]. Proof not given 2019-20.

We need to show that

∀k ∈ [c, d] , ∀ε > 0, ∃ δ > 0 : ∀y, |y − k| < δ =⇒ |g (y)− g (k)| < ε.

We prove this here only for the open interval (c, d), I leave the question
of end points to the interested Student.

Let k ∈ (c, d) , an interior point, be given. Let ε > 0 be given. Choose

δ = min (k − f(g(k)− ε) , f(g(k) + ε)− k) .

Is δ > 0? Start with the trivially true inequalities g(k)− ε < g(k) < g(k)+ ε.
Applying f throughout, a strictly increasing function, gives

f(g(k)− ε) < f(g(k)) < f(g(k) + ε) ,

i.e. f(g(k)− ε) < k < f(g(k) + ε) ,

since f(g(k)) = k. Rearrange these two inequalities as k − f(g(k)− ε) > 0
and f(g(k) + ε)− k > 0 and we see that δ > 0 as required.
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We will use two properties of δ, namely

δ ≤ k − f(g(k)− ε) and δ ≤ f(g(k) + ε)− k. (1)

We split |y − k| < δ into the two cases of y ≥ k and y < k.

Case 1. Assume y satisfies k ≤ y < k + δ then, by the second property of
δ in (1) , we have

y < k + (f(g(k) + ε)− k) = f(g(k) + ε) .

i.e. k ≤ y < f(g(k) + ε) . Apply g, which we have shown to be a strictly
increasing function, to get

g(k) ≤ g(y) < g(f(g(k) + ε))

= (g ◦ f) (g(k) + ε)

= g (k) + ε

using the fact that g is the inverse of f . Hence

k ≤ y < k + δ =⇒ |g(y)− g(k)| < ε.

Case 2 Assume y satisfies k − δ < y < k. Then, by the first property of δ
in (1) ,

k − (k − f(g(k)− ε)) < y.

i.e. f(g(k)− ε) < y < k. Apply g to get

g(f(g(k)− ε)) < g(y) < g(k) .

But g(f(g(k)− ε)) = (g ◦ f) (g(k)− ε) = g(k)− ε and so

g(k)− ε < g(y) < g(k) .

Hence
k − δ < y < k =⇒ |g(y)− g(k)| < ε.

Combine both cases to get 0 < |y − k| < ε implies |g(y)− g(k)| < ε.
Hence g is continuous at k.

Since k ∈ (c, d) is arbitrary, g is continuous on (c, d) .
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Finally, If f is strictly decreasing on [a, b] apply the result above to f̂ (x) =
−f (x) a continuous strictly increasing function. We then find ĝ the continu-

ous, strictly increasing inverse to f̂ . I claim that g (x) = ĝ (−x) is the inverse
to f . To see this just check

g (f (x)) = ĝ (−f (x)) = ĝ
(
f̂ (x)

)
= x

for all x ∈ [a, b], and

f (g (y)) = −f̂ (ĝ (−y)) = − (−y) = y,

for all y ∈ [c, d].

The function ĝ is strictly increasing yet I claim that g is strictly decreas-
ing. To see this let k1 < k2. Then −k2 < −k1 and so ĝ (−k2) < ĝ (−k1) since
ĝ is strictly increasing. Yet by the definition of g we have g (k2) < g (k1).
So we have shown that k1 < k2 ⇒ g (k1) > g (k2), the definition of g being
strictly decreasing. �

The Inverse Function Theorem should not be a surprise. The ex-
istence of g will follow from the Intermediate Value Theorem. For every
c < y < d there exists, by the IVThm, a < x < b : f(x) = y. Define g by
g(y) = x. That x is uniquely defined is a simple proof by contradiction as
is the fact that g is a strictly increasing function. The longest part of the
proof is to show that g is continuous. Yet, recall the ‘idea’ that a function is
continuous if the graph can be drawn without taking the pen off the paper.
But this property holds however the graph is described, be it in terms of its
distance from the x-axis, i.e. as f(x), or its distance from the y-axis, i.e. as
g(y).

I have stated Theorem 2.3.3 for functions on a closed and bounded interval
[a, b] because of the use, in the proof, of the IVThm which requires [a, b].
There are yet more versions of Theorem 2.3.3 for intervals such as [a, b), (a, b]
or (a, b). And further we can allow a = −∞ or b = +∞. Proofs of these
extensions are not given in this course but are used in the following
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Example 2.3.4 Each of the functions x2, x3, ..., xn, ... is strictly increasing
on [0,∞) and continuous there. Therefore the inverse functions

√
x, x1/3, ..., x1/n, ...

are well-defined and continuous on [0,∞). In fact x1/n are continuous on R

if n is odd.

Solution is immediate. �

You will have made use of the logarithm in MATH10242 and many times
in other courses but you have had to wait until now for its definition.

Example 2.3.5 So far we have seen that the function ex is continuous and
strictly increasing from (−∞,∞) to (0,∞). Hence it has an inverse function
from (0,∞) to (−∞,∞) . We denote this function by ln x, so ln(ex) = x for
all x ∈ (−∞,∞) while eln y = y for all y ∈ (0,∞). The Inverse Function
Theorem tells us that ln is a continuous strictly increasing function.

You should ask yourself whether this function, ln x, the natural logarithm
of x, has the properties you expect. For example, is it true that ln a+ln b =
ln ab for all a, b > 0?

Having defined x1/n for x ≥ 0, n ≥ 1 we can defined xr for x ≥ 0 and
r ∈ Q by writing r = m/n and setting xr =

(
x1/n

)m
. By the Product Rule

for continuous functions this is continuous. I leave it to the students to check
it is strictly increasing.

This leaves the question of defining xα for x ≥ 0 and α ∈ R

A solution could be to take a sequence of rational numbers {rn}n≥1
con-

verging to α and then define

xα = lim
n→∞

xrn .

There would be things to prove, i.e. does this limit always exist; is it inde-
pendent of the sequence {rn} chosen; do the properties of xrn , i.e. continuous
and strictly increasing, translate to xα?

With the exponential and logarithmic functions we can give an alternative
definition of the power of a non-negative number.

Definition 2.3.6 For x ∈ (0,∞) and α ∈ R define xα = eα lnx.

Then by the Composition Rule for continuous functions xα = exp (α ln x)
is continuous in x on (0,∞) for all real α. I leave it to the students to check
that for α > 0 it is strictly increasing, while for α < 0 it is strictly decreasing.
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